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PEDAGOGICAL STRATEGIES
FOR HUMAN AND COMPUTER TUTORING

Brian J. Reiser
Princeton University

Abstract

In this paper, I consider the pedagogical strategies of human
tutors and examine the implications of this work for research in
intelligent tutoring systems. I will briefly describe GIL, a in-
telligent tutor for simple LISP programming, and consider its
effectiveness from the perspective of human tutoring strategies.
Finally, I will discuss the implications of research on human tu-
toring for the design of intelligent tutoring systems for problem
solving.

1 Introduction

The promise of modern educational computing has always been the hope of
capturing the pedagogical advantages of effective instruction and delivering
it, via computers, to students. There are a number of potential models avail-
able into which the computer might be accommodated. Some have argued,
for example, that the best use of computer in instruction is to provide a
laboratory for exploration and discovery. Alternatively, the computer might
be used as a collaborator for problem solving, to provide the student with
a cooperative learning environment. There are important reasons to explore
the pedagogical benefits of discovery learning (e.g., Bruner, 1961; Papert,
1980) and of cooperative learning (Slavin, 1983). A promising model for the
interaction between the computer and student that has received much re-
cent attention is drawn from the tutoring situation. Indeed, individualized
instruction is often though to be the most effective form of instruction, par-
ticularly for problem solving domains (e.g., Bloom, 1984; Cohen, Kulik, &
Kulik, 1982).



What are the pedagogical benefits of individualized tutoring?. Is it pos-
sible to capture these advantages and embed them in a computer system?
In this paper, I discuss the strategies employed by human tutors in problem
solving domains and examine whether these techniques can be incorporated
into computerized tutors. I will describe an intelligent tutoring system for
programming that has been demonstrated to be effective, and consider how
it achieves the pedagogical goals of human tutors teaching the same mate-
rial I will consider the problems for computer-based instruction, and the
ways in which it may have advantages over human tutors. Finally, I examine
several current controversies in intelligent tutoring systems research from the
viewpoint of the pedagogical strategies of human tutors.

2 Pedagogical Strategies in Human Tutors:
Why are human tutors effective?

A number of studies have documented the pedagogical effectiveness of human
tutors (e.g., Bloom, 1984; Cohen, Kulik, & Kulik, 1982), confirming a com-
mon intuition that when a student has difficulty, the best course of action is
to provide the student with one-on-one instruction. Studies of individualized
tutoring in a variety of domains have demonstrated effects on both learn-
ing time and subsequent performance. Several recent studies have begun
to analyze the pedagogical strategies of tutors to ascertain what underlies
their effectiveness (e.g., Fox, 1988; Lepper, Aspinwall, Murnme, & Chabay,
in press; Lepper & Chabay, 1988; Putnam, 1987). These studies begin to
suggest why tutoring is so effective. Experienced human tutors tread a deli-
cate balance in order to provide students with enough guidance and help to
keep them from becoming frustrated or confused, yet allow the student to do ,.'

as much of the work as possible and feel in control. (V_
Learning by doing is much more effective than learning by observation

(e.g., Anderson, 1983; Anzai & Simon, 1979). Yet this type of learning has its
pitfalls, both cognitive and motivational. Students trying to solve problems
can expend much time and effort pursuing blind allies due to errors and poor
strategies. Of course, in some cases students may learn something valuable ton For
while searching for a solution. In many cases, however, such episodes can RAI

leave students confused and frustrated, and it may be difficult to return to B 5
neced [3
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the point in the problem solving before the error occurred. The assistance of
a tutor enables a type of "guided learning by doing," in which the students
reap the rewards of active problem solving while the tutors mrinimize the
costs. In this way, tutoring has both cognitive and motivational advantages.

Lepper and his coUeagues have characterized the impact of tutoring on
the motivation of students (Lepper et al., in press; Lepper & Chabay; 1988).
They argue that tutors manage to promote a sense of challenge, provoke
curiosity, and maintain the student's feeling of control. Fox (1988) provides
a detailed analysis of tutorial interactions, as evidenced by characteristics
of the discourse interaction. She argues that tutors provide a "safety net"
during problem solving, so that student errors are kept to a minimum. She
demonstrates that tutors employ subtle techniques to notify students that a
step in the solution needs to be repaired. Tutors provide frequent feedback,
typically indicating very briefly their agreement with each step. A short hesi-
tation (less than 1 second) in responding with confirmation leads the student
to assume that something is wrong with the current step, and frequently stu-
dents can then correct the mistake. If more explicit help is required, the
tutor focuses the student's attention on the part of the solution that requires
modification, or on information potentially useful for repairing the error. Tu-
tors avoid telling students they are wrong, and avoid telling them precisely
in what manner a step is incorrect; instead they try to lead students to dis-
cover the error themselves. The effect is a guided problem solving session, in
which the student takes steps and fixes wrong paths, while the tutor helps
the student stay on track. In some cases, students do request guidance in the
form of goals to set, filling in of missing information, or explicit confirmation
of the correctness of a step, but in most cases such requests are not necessary
because the tutor provides such information through hints, leading questions,
verbal agreement, and other methods.

In summary, human tutors moderate their control of the interaction to
provide sufficient assistance for the student to solve the problem, while being
careful to avoid leading the student too much. Tutors provide enough hints
to help students plan and effect a solution, and use error feedback and hints
to prevent students from reaching situations from which it would be too
difficult to recover. Students discover their own errors, but rely on the tutor's
continual feedback for monitoring their problem solving and to direct their
focus of attention on the relevant aspects of the solution. This control is
indirect, however, so that the students maintain their feeling of being in
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control. Indeed, the feeling of control over the domain is enhanced by the
tutors, who enable the students to solve problems and learn by doing but
without the dangers of getting lost and frustrated.

In this way, tutoring has many of the advantages of cognitive appren-
ticeship (Collins, Brown, & Newman, 1989). The tutors can model expert
solutions to a problem so that students can build a conceptual model of the
processes required for a task. The tutor's coaching and feedback provides
a scaffolding so that the tutor's assistance supports the student's problem
solving. In addition, the interaction with tutors requires students to articu-
late their reasoning, enabling them to focus more on the process of solving
the problems, rather than on the products or solutions themselves.

3 Observations of Human Tutors in the Pro-
gramming Domain

My colleagues and I have studied human tutors in a variety of contexts
to provide comparisons for our computer-based instructional systems. Our
studies have examined students learning to write computer programs. We
have compared students learning on their own and in pairs, students learning
with human tutors, and students learning with the aid of intelligent tutoring
systems. In this section I will summarize some of the findings concerning
the effectiveness of human tutors teaching programming. In the following
sections I will then compare these findings to results with our intelligent
tutoring system for programming.

In one study, currently in progress, we examined students learning to pro-
gram in a variety of learning situations (Reiser, in preparation). All subjects
read a textbook introducing them to LISP programming (Anderson, Cor-
bett, & Reiser, 1986). Subjects read the first three chapters, which covered
the topics of using LISP functions to manipulate numbers and lists, defin-
ing new functions, and writing programs using predicates, conditionals, and
logical functions. Subjects read the text and solved the problems in each
chapter, using a LISP interpreter and a simplified screen editor to modify
their programs. There were 26, 12, and 13 problems in the three chapters,
respectively. Subjects worked on the material at their own pace, and took 3
to 5 sessions lasting from 2 to 4 hours each to work through all the text and
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problems.
The study included three learning conditions: No Tutors Tutor, and

Consultant.' The No Tutor subjects were instructed to read the text and
solve the problems on their own, and ask questions only if necessary. At the
end of each chapter, these subjects presented their solutions to the experi-
menter, who graded each solution as correct or incorrect, whereupon subjects
were given an opportunity to attempt to correct their mistakes. In contrast,
the Tutor subjects worked through the same material with an experienced
human tutor. In the Consultant condition, the tutors were present only a
few feet away in an adjacent room in the laboratory suite, within sight of the
subjects. Subjects were instructed to ask as many questions as they wished of
the human tutors. When asked, the tutor would sit down next to the subject
and help with whatever problem or confusion the student had encountered,
until the tutor felt the topic was completed, typically 5-10 minutes later. The
purpose of this condition was to compare a natural tutoring situation with
one in which the tutoring interactions were initiated only by the student. We
employed two tutors, one male and one female, both Princeton undergradu-
ates. Subjects were matched with the tutor of the same gender in the Tutor
and Consultant conditions.

The results demonstrate a dramatic advantage for the Tutor subjects.
The subjects completed the material approximately 40% faster than the No
Tutor subjects, and completed the problems with only one-third the number
of solution attempts. Learning times for the Consultant subjects fell between
these two groups, slower than the Tutor subjects but faster than the No Tutor
subjects. Interestingly, although the subjects asked relatively few questions,
(approximately 3 questions per chapter, or 1 question every 45 minutes), this
help at presumably crucial points in the subject's problem solving resulted
in faster learning than the No Tutor subjects.

Our examination of the tutoring protocols provides further support for
the view of tutors as safety nets for learning by doing. Although the solutions
to these programming problems were typically programs no longer than 5-10
lines, many were relatively difficult and could require up to 45 minutes to

IThe study also included a fourth condition, Collaborative Learning, in which students
worked in pairs. We focus in thi, paper on the effects of tutoring, so we will use the No
Tutor subjects as the control group for comparison with the Tutor and Consultant groups,
and will not consider the Collaborative Learning group here. For a full presentation of
this learning experiment, see Reiser (in preparation).
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solve. The sessions were highly interactive, as tutors helped the students set
goals, pointed out errors, provided guidance in fixing the errors, and provided
hints for steps in the solution. Consistent with Fox's (1988) observations,
the students relied on continual feedback from the tutors. Tutors reacted to
each step with confirmations, questions, prodding, asking for justifications,
etc. In most cases, the tutor's feedback, although indirect, enabled subjects
to quickly determine whether a solution path was correct or likely to succeed.
The tutors, through questions and hints, were able to focus students on the
part of a solution that needed elaboration or repair.

The tutors' feedback varied in its timing and content. In some cases, the
tutors just prompted the student to rethink a step, whereupon the student
would initiate a repair of the partial solution. In other cases, the tutors in-
terrupted to tell the students something that was missing or incorrect. In
contrast, the tutors also let some types of errors go, returning to them at
the end of the solution when the student was ready to check the program by
running it. Thus, the tutors appeared to modulate their responses depend-
ing upon the potential learning consequences of the error. Tutors quickly
corrected errors that would be distracting and might lead to floundering,
and did not comment during the solution on errors that might lead to pro-
ductive lea ing episode: later. Instead, they made sure that the subject
discovered the error at an appropriate point, and then helped to diagnose
the problem and fix the solution. Lepper (1989) has also discussed this type
of modulation of response based on potential learning consequences. Lepper
found that tutors interrupt upon "disruptive" errors and let the students
continue after "productive" errors without comment until the initial solution
was completed.

Through hints, leading questions, and continual confirmatory feedback,
the tutors guided the students' problem solving, and prevented the students
from reaching error states from which it would be too difficult to recover.
This enabled the students to master the material more quickly than students
working on their own. Our current analyses are focused on characterizing
these different timing and feedback situations. I will return to the strate-
gies exhibited by these human tutors in the evaluation of the behavior of
intelligent tutoring systems in Section 5.
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4 What Pedagogical Benefits of Tutoring
Can be Achieved in a Computer Tutor?

Human tutors are clearly doing very careful monitoring of students' problem
solving, and providing very subtle feedback. Can this type of reasoning be
modeled in a computer tutor? Are there perhaps other potential advantages
of computer-based instruction that are not evident in human tutors? In this
section, I describe and evaluate our work on intelligent tutoring systems for
programming from the perspective of human tutoring studies.

4.1 GIL: An Intelligent Tutoring System for Pro-
gramming That Explains Its Reasoning

Anderson and his colleagues have developed the model tracing methodol-
ogy for intelligent tutoring systems (Anderson, Boyle, & Reiser, 1985). The
methodology is designed to guide students as they learn to solve problems in
the target domain. A model tracing tutor contains a problem solving model
encoding the target skills in the curriculum and a diagnosis component that
tracks students' reasoning. This type of tutoring system provides instruc-
tion in the context of problem solving by monitoring a student's solution
and providing feedback when the student requests guidance or demonstrates
a misconception. The tutor analyzes each step as it is taken to determine
whether it is on the path toward a solution or indicates a misconception. The
student's step is analyzed by comparing it with the rules currently considered
by the tutor's problem solving model, called the "ideal student model." If
the student's action is one that would be produced by executing one of the
rules considered by the ideal student model at that point in the probiem,
the model applies that rule, thus following the student's path through the
problem. Following such a correct step, the tutor is silent and permits the
student to continue. Alternatively, if the student's action does not corre-
spond to a correct step, the tutor considers its catalog of buggy rules, which
represent general patterns of errors. Errors are diagnosed when the student's
step matches the action of a buggy rule, whereupon the tutor interrupts with
the advice associated with the rule.

The model tracing tutor understands each step the student takes and
stays in the background when the student is following a path leading to a
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correct solution, but upon request or an erroneous step, it provides a hint or
the next step in the solution, enabling the student to continue. For example,
the CMU LISP Intelligent Tutoring System helps students learn to write
LISP programs by providing feedback as students compose a program to
solve a problem (Anderson & Reiser, 1985; Corbett, Anderson, & Patterson,
1988; Reiser, Anderson, & Farrell, 1985). The system monitors each word
a student enters in a function definition, matching the step taken by the
student against the possible next steps suggested by the tutor's problem
solver, providing immediate feedback when an error is diagnosed as well as
hints concerning overall strategies and possible next steps when requested.

The model tracing methodology is quite effective in providing online feed-
back for students as they solve problems. Our current research extends the
capabilities of such model tracing tutors by building a system that can con-
struct explanations directly from its problem solving knowledge, rather than
relying on canned text associated with the rules. Our research group has
constructed an intelligent programming tutor called GIL, Graphical Instruc-
tion in LISP, that responds to student errors and requests for guidance by
finding the relevant problem solving rules and plans and generating explana-
tory feedback to guide the student's reasoning (Reiser, Friedmann, Kimberg,
& Ranney, 1988; Reiser, Kimberg, Lovett, & Ranney, in press). GIL con-
tains a problem solving model designed to make explicit the causal knowl-
edge about programming operations, and an explanation component that
constructs hints and error feedback directly from the content of its problem
solving knowledge. If an error in a student step is found, GIL's explainer
analyzes the discrepancies between the student's step and the closest match-
ing correct rule and offers suggestions to the student about how to improve
the step. Explanations may draw upon the problem solving rule, general
knowledge about the operator being used, and the higher-level plan of which
the step is a part.

The GIL problem solver consists of a set of reasoning rules and abstract
plans. Each rule contains a description of the properties of the intermediate
products in the solution that the step creates. The tutor needs to understand
how LISP transforms the data at each step so that it can guide the student in
reasoning through a new plan. For example, it is not sufficient for the rules
to encode the knowledge that taking the first of a reversed list will return
the last element; the rules must also represent the reasoning in the algorithm,
that is, that reversing the list results in the last element being moved iuto
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the first position, enabling the use of first to extract that element. To
represent this knowledge, each rule describes the properties that are true of
the input and output data for that step. Thus, the problem solver not only
knows what step to take, but also knows how each step changes the data, and
therefore why the step is effective. When the rule is applied in a solution,
these properties are added to the current problem state as new inferences
about the problem. These properties are then used to select further steps
involving the object, and can be used to explain why a step is strategic or to
explain why a student's step is in error.

The problem solving plans in GIL represent important sequences of steps
to achieve a particular type of subgoal. Many of GIL's rules either initiate
a plan or are applied only if a particular plan has been undertaken. Thus,
GIL can use these plans to explain the larger context in which a step occurs.
Recognizing which plans students are following in a problem is an important
prerequisite for providing sensible feedback (Bonar & Cunningham, 1988;
Johnson, 1986).

GIL contains a graphical programming interface that is structured to take
advantage of the problem solving knowledge of intermediate products (Reiser,
Friedmann, Gevins, Kimberg, Ranney, & Romero, 1988). GIL students build
a program by connecting together objects representing program constructs
into a graph, rather than by defining LISP functions in their traditional
text form. Students take a step in GIL by selecting a LISP function and
specifying its input and output data, making explicit assertions about the
changing state of the program's data. A completed program in GIL consists
of a graph specifying how a chain of LISP functions transforms the input
data to achieve a particular type of output. A partially complete solution,
including a requested hint from GIL about how to proceed next, is shown in
Figure 1. The use of intermediate products makes the process of embedding
functions to sequence operations on data more explicit, and should lead to
a better understanding of functions. The interaction allows the tutor to
monitor students more closely and provide more useful assistance as they
learn programming plans than one in which students specify only the final
surface form of the solution.
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Write a program to take a list as an
argument and construct a new list with
the last element rotated to the front of
the list. For example. (a b c d) would, . become (d a b c).

You need to eventually connect to
(abc). (abc) contains the first few
elements of (a b a d).

rMSi You might start by using a function that
:res you (d b). You can use

C b a} oto eventually extract (a b c).
i) ii~is a list with the revers, of(ab c) at the end.

Figure 1. A forward working hint in the GIL intelligent tutoring system.
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A difficulty in learning to solve problems in many types of domains is
that the syntax of a problem's solution does not reflect the reasoning process
required to construct the solution. We designed the graphical representation
of a program used in GIL to be more congruent with the reasoning required
in the task than the traditional text form. The structure of the solution
being constructed mirrors the planning required to construct a program.
Reasoning chains are represented by branches of the graph joined together to
achieve the final goal. A second advantage is that the intermediate reasoning
products are made explicit, so that students see the data manipulated as
they construct the program. This helps students understand how particular
algorithms work and, more generally, helps them learn the logic of embedding
functions within other functions to construct an algorithm. Finally, the GIL
interface enables students to plan in a variety of directions. The GIL problem
solver contains rules for reasoning forward from the given data toward the
goal, and rules for doing goal decomposition by reasoning backward from the
goal toward the given data. The interface supports both types of reasoning
and provides a distinct visual representation that mirrors the direction of
reasoning. Students may reason in either direction, and may choose to work
on any branch of the program at any time. The system supports reasoning
about steps in whatever order is natural for the students, even though it may
not match the order in which the components appear in the final surface form
of the solution.

GIL helps students solve problems by providing feedback when students
request a hint and when students make an illegal or strategically poor step.
The GIL explainer draws upon the same knowledge base that the problem
solver uses to construct solutions: problem solving rules, plans, and general
knowledge about the LISP operators. If a hint is requested, the explainer
selects a rule that best continues the problem solving exhibited by the student
so far, and uses the information in the rule to construct a hint. Figure 1
displays a hint provided by GIL, suggesting a plan to work forward to achieve
the current goal of getting a list containing everything but the last element.
In the case of student errors, GIL finds the most similar matching rule and
uses it to explain how the student's step is in error. Because the rules contain
a description of the input and output, the student's step can be compared
with the properties of the objects in the rule, and any discrepancies can be
described. GIL handles legal errors, in which the step in the program does
not correctly manipulate the selected data, and strategic errors, in which the
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chosen step is a legal LISP operation but is not strategically useful. GIL
first describes what is good about the student's step and then points out the
ways in which the step is in error or could be improved by explaining how
the student's input, output, or function deviates from the properties in the
correct rule.

GIL's reaction to a strategic error is displayed in Figure 2. Two levels
of help are shown. The first paragraph points out the nature of the error;
the second level, requested by the student, offers a specific suggestion and
explains why this step would be effective. In this way, the first level of
feedback provides the opportunity for students to figure out how to fix the
step, or to request more directive feedback.

Write a program to take a list as an
argument and construct a new list with
the last element rotated to the front of
the list. For example, (a b c d) would
become (d a b c).

Working backwards usin APPEND is a
good idea, but (d a) and bc maynot
be the best input to use. Breaking
(d a b c) into (d a) and (b c) makes the
problem harder than it needs to be.

Try using (d) and (a b c) asthe input for
APPEND. This input will be easier to
get from (a b c CO. (d) is a list
containing the last element of
a b c d). (a b c) contains the first

few elements of (a b a d).

[New Inl Ut ew Step

(a b ocd)

Figure 2. Two levels of feedback for a strategic error.
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Figure 3 shows another type of strategic error. In this case, the error is
made on a forward working step. GIL infers that the student has adopted a
plan to extract the component (d) of the target list by using rest repeatedly
until a list of the last element is obtained. The conditions for this plan match
the constraints of the current problem, except that the student's plan requires
knowing the position of the target element from the front of the list, and the
problem description states that the target element is the last element. (It
is only true for this example that the target is the fourth element; with a
different input list, then the last element might be the fifth element or the
sixth, etc.)

Write a program that takes one list as an
argument and produces as output a list
containing the first and last element of
that argument. For example, if the
argument were (a b c :) then theEoutput would be (s d).

OK, I think I see what you are trying to
do. Are you trying to use RESTs on
(a b a d) to get the list (d)? It's not a bad
idea, but unfortunately it won't be a
very general solution. Remember that
your program should work for an input
lst of any length, not just for (a b c).

oNw' Step [ore In o

(c d) J

Figure 3. A strategic error corresponding to an overly specific plan.
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By dynamically constructing explanations directly from its problem solv-
ing knowledge, GIL responds to student errors without any bug catalog. In-
stead, explanations are dynamically constructed by comparing the student's
step to the relevant problem solving rules. Our work on GIL demonstrates
the potential for driving the explanation process directly from problem solv-
ing rules. Such a tutor is more flexible in that it can generate feedback
dynamically to new situations rather than being prepared with extensive
bug catalogs and a catalog of English explanations associated with all the
correct and buggy rules.

4.2 An Empirical Study of GIL

We have begun to evaluate the effectiveness of our GIL tutor. Our first
study compared students learning to program with GIL with another group
of students learning the same programming concepts in traditional text-based
format (Reiser, Ranney, Lovett, & Kimberg, 1989). These control group sub-
jects were also the control group for the human tutoring study mentioned
earlier. The subjects read a short text describing the data structures, atoms
and lists, how LISP functions work, how to combine LISP functions into a
program, and how to use a chain of LISP functions to describe a general algo-
rithm. The text was adapted from the first two chapters of the programming
text described earlier. The main modification of the curriculum for the GIL
students was the substitution of graphical representations for the text-based
representations and the omission of a discussion of the syntax for defining
functions and referring to variables.

The GIL subjects solved a sequence of 14 to 15 programming problems
interspersed with the text. Subjects worked on the problems using GIL
following a brief demonstration of the system by the experimenter. The ex-
perimenter demonstrated how to take forward and backward steps, how to
cancel steps, and how to request hints. All subjects had little difficulty learn-
ing the procedure for specifying steps in GIL. No subject found it necessary
to ask the experimenter for assistance in using the interface following the
demonstration.

The simplest measure, learning time, suggests that GIL is very effective
in teaching programming. Students working with GIL completed reading the
text and working on the problems in less than two hours, which is roughly
less than half the time that subjects typically spend working on these two
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chapters without tutoring. There are many reasons to expect subjects to
solve problems with GIL more quickly than subjects working without tutor-
ing. Direct comparisons with these subjects are difficult to make, however,
because the curriculum is very different. In the standard LISP learning sit-
uation, students spend a good deal of time masteriag the syntax of defining
functions and using variables. To minimize the load of new material, stu-
dents are given a full chapter of problems to familiarize them with the data
structures and simple LISP functions before introducing them to function
definition. In contrast, in the GIL curriculum students are immediately in-
troduced to deflning functions and learn the semantics of the simple LISP
functions while defining their own functions. Comparisons of overall solution
time is misleading, therefore, because the GIL subjects solve fewer problems
overall (since most of the Chapter 1 problems are unnecessary for the GIL
students) and are presented with simplified versions of function definitions
and variables, with graphical rather than text-based structure.

A more accurate evaluation is possible by comparing performance on a
selected set of problems from the end of the function definition chapter. We
compared the solution times for the last five problems in this chapter. The
GIL subjects had been working with LISP at this point for approximately 1 to
1.5 hours, and the control subjects had been working with LISP for about 4 or
5 hours. The control subjects, by this point, had already defined 8 functions
and had mastered the syntactic form of function definitions and variables.
The difficulties of the last five problems consisted in planning an algorithm
to manipulate the data to produce the desired result. The GIL subjects
solved these problems much more easily than the control subjects. The total
solution times for the GIL subjects for these five problems was 15 minutes,
while the control subjects took an average of 58 minutes. Interestingly, GIL
matched the effectiveness of the human tutors for these problems. Students
working with human tutors solved the problems in approximately 25 minutes.

It is important to be cautious in interpreting these results, because the
GIL group produces solutions of a different sort than the Human Tutor or
No Tutor control subjects, namely program graphs using concrete examples
rather than the textual program with variables. However, the two groups do
have a common learning criterion, in that they must successfully construct
the same difficult algorithms or sequences of LISP functions to solve the
problems in the final section. The results demonstrate that students can
more easily master the material required to solve these problems in the GIL

15



environment. We believe that the faster learning of the GIL students is due
to two aspects of the environment: the model tracing nature of GIL and the
nature of interacting with GIL's graphical programming environment.

4.3 Facilitating Reasoning with Model Tracing Feed-
back

The model tracing nature of GIL provides feedback for students somewhat
similar to the type of feedback that human tutors provide. GIL's feedback
achieves the same purpose as a human tutor's constant feedback: it keeps
the student from going too far off the track and minimizes the consequences
of errors. Consider the much larger number of solution attempts required for
the No Tutor subjects than the Tutor subjects. The human tutors focused
students' attention on which part of the solution needed to be fixed, and
when necessary offered hints on how to proceed with the modifications. GIL
provides feedback of the same sort. The GIL feedback points out whenever a
step is in error. This feedback provides visual and verbal information to help
the student locate the error by marking the portion of the student's step that
needs to be modified in the graph. In addition, the feedback briefly describes
how the step can be improved. The feedback is in the form of a hint, in that
it describes the nature of the difference between what the student has and
what is needed, but does not provide the correct answer (unless the student
requests "More Info"). In addition, GIL's feedback distinguishes between a
variety of errors in reasoning about LISP's behavior (legal errors) and poor
strategies (strategic errors). The error feedback and hints appear to greatly
reduce the students' time to construct a solution.

GIL's feedback differs somewhat from the human tutors' in that it is typ-
ically more explicit and directive. Whereas GIL says "your input to append
needs to be a list," the human tutors would typically focus the student on
the same error by using leading questions, such as: "Think about your in-
put again. What type of input do we need for append?" Nevertheless, the
important aspects appear to be that the feedback focuses the student's at-
tention on the error that needs correcting and urges the student to attempt
to correct it, rather than merely telling the student what to do. GIL stu-
dents are typically able to fix their errors relying on the first level of help;
students immediately corrected an error in approximately half of the cases,
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and requested more directive error feedback in only 12% of the errors.
A second point about the feedback is its immediate nature. Our human

tutors, like Fox's tutors, provided continual feedback Students could always
tell that they were on the right track, or that a step was not correct. Al-
though in some cases tutors delayed responding to an error until later in the
solution, an immediate response was more typical. GIL also responds imme-
diately, as soon as the subjects have finished a complete step. If something is
wrong with the step, GIL displays a hint. If the step is correct, then GIL is
silent, corresponding roughly to the human tutor's quick verbal agreement.
In summary, by following the students' reasoning and responding upon errors
to attempt to hint the student toward a fix of the error, GIL emulates the
continual feedback and leading questions provided by human tutors.

A second GIL study, conducted by John Connelly, demonstrates the im-
portance of GIL's explanations. This experiment employed two modified
feedback conditions, in addition to the standard explanatory GIL condition.
In the minimal feedback case, GIL merely indicated whether each step was
correct or not, and provided students the opportunity to request the correct
step, without an explanation of the error or the aptness of the correct step.
In the location feedback condition, GIL indicated which part of the step was
incorrect and indicated how to fix it upon request, but again provided no
explanations. Subjects in these conditions relied more on the second level of
help to be told how to fix the error. In spite of this greater reliance on be-
ing told the right answer, these subjects exhibited longer error-fixing episodes
and poorer performance on post-tests than those receiving explanations upon
errors. Location feedback subjects performed better than minimal feedback
subjects, but both groups fared worse on all measures than the explanatory
GIL feedback subjects. The study suggests that GIL's facilitation of stu-
dents' learning is not merely providing feedback on the correctness of the
steps or in leading students to a solution by telling them the answer. Rather
the positive effects of GIL lie in the way in which the explanations enable
students to fix their errors and understand why their fixes are successful.
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4.4 Facilitating Reasoning with Reasoning Congru-
ent Representations

Another advantage of the GIL tutor that appears to account for its effective-
ness is that the environment is more congruent with the reasoning students
need to do to construct programs than the standard LISP environment is.
Students can more easily understand how LISP works and more easily plan
algorithms using GIL. The most striking evidence for this concerns their use
of forward and backward reasoning. Students are free to work forward from
any of the given data toward any of the goals at any time in the problem (as
in the step taken in Figure 3), or backward from the goal data toward the
given data (as in the step taken in Figure 2). We analyzed the number of
forward and backward reasoning steps in each student's solutions (excluding
final steps that linked a forward branching path with a goal). Interestingly,
95% of all steps were forward steps rather than backward steps. Backward
steps were used in only 10% of the problems. When backward steps were
used in a problem, only a single backward step was taken. Indeed, all uses
of backward steps occurred using LISP combiner operations, which act to
decompose the problem into two subgoals. These goal decomposition steps
were typically the first step taken by the subject in the problem and often
followed a hint from GIL to use such a goal decomposition step. In summary,
subjects showed a strong tendency to work forward from the given data to-
ward the goal. In some of the more difficult problems, a backward step might
be used to decompose a complex goal into two subgoals, but this strategy was
not very frequent. When a backward decomposition was employed, subjects
then worked completely in a forward direction to achieve those goals, even
though further backward steps of course were possible.

It is interesting to contrast the direction of steps taken by these subjects
as they planned their algorithm with the surface form of the final solution
in standard text-based LISP. A complete solution for the problem shown
in Figure 1, along with the solution in standard LISP form, is shown in
Figure 4. Note that the order of the functions in the surface form of the
code corresponds to a complete top-down or backward solution, coding cons
before first and first before last. If subjects' reliance on forward steps
in GIL is a true representation of their reasoning, then novices do not appear
to plan their solution in the order in which the functions appear in the
solution. Forcing subjects to enter their code in the outside-in left-to-right
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fashion required by standard LISP interpreters and by the CMU LISP Tutor
certainly forces students into a different strategy than the one in which they
can work through the algorithm in the order in which it transforms the data.
While it is true that a preference for forward reasoning does not guarantee
that subjects are able to solve the problems more effectively when forward
reasoning is allowed, the greater ease in solving the problems when given art
environment that supports forward reasoning strongly suggests that in this
case at least the students do know what is good for them.

d (a bc)

Pry= (defun rotator (lie)

MIT (cons (firat (last lie))
(reverse (rest (reverse lie)))))

(c b a)

(d) REST

(d c b a)

ERST

(a bocd)

Figure 4. A completed program graph and the corresponding LISP code.
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Our observations of novice programmers working with human tutors are
consistent with these findings. Even though the tutors encourage students
to try portions of their solution on the computer or to enter portions into
the editor, students are reluctant to do this. These students appear to work
through the algorithm on paper or verbally with the tutor using forward
reasoning to manipulate the data of an example until a subgoal is satisfied
(e.g., getting all but the last element of a list in the rotater problem shown
in Figure 1). At that point, students are willing to enter the solution they
have just planned, and can do so in the left-to-right order of the surface form
of the solution.

There are several reasons why the forward reasoning available in GIL may
be effective for these beginning students. In general, GIL provides an oppor-
tunity to reason in temporal order about the data transformations. Given
the operators available for reasoning in this domain, domain-general tech-
niques such as means-ends analysis would be more effective when reasoning
from the given data to the goal rather than via backward reasoning. Since
novices are likely to rely on this strategy, providing an environment that
supports these forward steps enables them to interact with the tutor as they
make each inference step, rather than being forced to plan an entire chain of
reasoning before communicating it to the tutor. This reduces the memory
load of keeping track of the properties of the data being manipulated. In
addition, if tutorial guidance is required, it can be presented on the precise
step at which it is required, rather than being delayed until the student has
planned enough of the solution to be comfortable in communicating it to the
tutor.

5 Comparing the Pedagogical Abilities of
Computer and Human Tutors

Our preliminary analyses of our GIL system indicate that it achieves sig-
nificant pedagogical improvements over a standard learning environment for
programming, and approaches the effectiveness of human tutors. Strong
pedagogical benefits have also been demonstrated for other tutoring systems
using similar methodologies (Anderson, Boyle, & Yost, 1985; Reiser et al.,
1985; Singley, Anderson, Gevins, & Hoffman, 1989). In this section, I evalu-
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ate the issues in intelligent tutoring systems design from the perspective of
human tutoring.

5.1 Model Tracing and Feedback

The ability of human tutors to monitor and provide frequent feedback for
students can be achieved to some extent in intelligent tutoring systems. In
domains for which it is feasible to build a problem solving model, a tutor
can track students' reasoning and provide guidance when necessary. This
feedback may take the form of confirmation that the student is on the right
track, hints to set goals when the student is not sure how to proceed next, and
feedback to help students locate and repair an error in a solution. The success
of model tracing tutors in these rich problem solving domains indicates that
it is possible to build tutors to provide intelligent feedback to guide students'
learning.

A controversial issue in the area of computer-based instruction concerns
the timing of feedback. Anderson, Boyle, and Reiser (1985) argued that a
tutor should respond with "immediate feedback." We argued that there are
clear advantages for providing immediate feedback upon errors because the
learning mechanism for adjusting a faulty rule or forming a new correct rule
relies upon the problem situation being active in memory. Empirical eval-
uations of the effectiveness of feedback in procedural learning indicate that
students learn procedures more quickly when provided with this feedback.
Students can more easily utilize feedback and explanations when the reason-
ing that led to the error is still accessible. Furthermore, immediate feedback
can prevent long episodes of counter-productive floundering. Consistent with
this view, Carroll's experiments with "training wheel" interfaces demonstrate
a large advantage in learning from environments that prevent typical error
states (Carroll & Carrithers, 1984; Catrambone, & Carroll, 1987). Students
learned computer skills more quickly because they committed less time to
recovering from error states that the training interface prevented. The ex-
tra time spent by control subjects did not appear to be useful; indeed, they
scored lower on performance tests than the training wheel subjects.

On the other hand, many educators argue that learning is more effective
when students are given the opportunity to experiment and make errors and
thereby "discover" and learn from correcting their own errors (e.g., Bruner,
1961; Papert, 1980; Schank & Farrell, 1987; Schwartz, 1989; Schwartz &
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Yerushalmy; 1987). One might argue, based on this view, that the immediate
feedback provided by model tracing tutors circumvents the possible benefits
from exploration.

How do human tutors behave when providing feedback? As already dis-
cussed, the evidence from tutoring dialogues collected by Fox and in our
laboratory demonstrate that tutors are very quick in the feedback they pro-
vide. Fox argues that tutors usually provide students an opportunity to
correct their own errors by slightly delaying their feedback when the student
makes an error. However, these delays are very short (1-2 seconds) and in
the examples presented by Fox feedback is provided typically within the next
sentence or two following the error. Furthermore, students become very at-
tuned to the constant confirmatory feedback provided by tutors. In most
cases, the lack of immediate reassurance following a step is taken by stu-
dents to indicate that they have made an error. Thus, human tutors appear
to provide at least minimal feedback quickly following each student step.

As discussed earlier, there is some variability in whether tutors respond
immediately. The immediacy of the tutor's feedback appears to be tied to
the learning potential of the error. In comparing results of different studies,
it seems reasonable to propose that the learning domain may influence the
behavior of tutors. For example, interruption in programming may be more
likely than interruption in subtraction, because the solution times for the
problems tend to be longer and hence the time delay between the context in
which the error occurred and the detection and fix of the error may interfere
with learning from the error. On the other hand, in interactive domains
that provide feedback, such as computer programming or computer learning
environments, tutors may be more willing to let errors through and let the
student discover them. However, this type of error discovery is very much
guided by the tutors, and thus differs from pure discovery learning. The
tutors, through increasingly directive questions, help students notice that an
error has occurred, help them focus on the relevant part of the solution, and
may help them determine the correct repair of the error.

An important consideration concerns the content of tutors' feedback to
students. Lepper and Chabay (1988) argued that tutors do not perform er-
ror diagnosis. This is an extremely important issue, because the diagnosis
of faulty reasoning has formed the basis of many intelligent tutoring sys-
tems approaches (Anderson, Boyle, t Reiser, 1985; Burton, 1982; Clancey,
1986; Johnson, 1986; Ohlsson & Langley, 1988; Sleeman, 1982). Lepper and
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Chabay argued that human tutors do not offer students their own hypotheses
about the faulty reasoning that led to a particular error. Instead, they direct
the student's attention to the part of the work that is in error, in an attempt
to get the student to notice and fix the error. Often the tutors will ask lead-
ing questions to focus the student on the part of the step that needs to be
repaired. In many cases, the tutor's feedback is sufficient for the student to
rethink the step and and correct the mistake without further hints from the
tutor.

There is an important distinction to be made here. It is clear that the tu-
tors in Lepper and Chabay's examples do not offer diagnosis and descriptions
of the misconceptions that would account for a student error. In this regard,
they are more subtle than some diagnostic intelligent tutoring systems. Many
computer tutors offer a description of the student's faculty reasoning, speci-
fying the particular way in which a solution is incorrect, or provide specific
corrective feedback explaining how the solution can be repaired (e.g., An-
derson, Boyle, & Reiser, 1985; Burton, 1982; Johnson, 1986). Although the
human tutors do not provide such directive feedback, they enable the student
to infer this type of information. Through leading questions these tutors do
focus students' attention on the parts of a step that need to be fixed. These
leading questions may become progressively more directive if the student
does not take the initiative and recognize the error (Lepper, 1989). In fact,
their leading questions may even refer to the surface characteristics of the
error, as in the following leading questior, from a tutor of a student learning
addition: 'Now look at that again. Can you put two numbers down in one
column here?" (data from Putnam cited by Lepper and Chabay, 1988, p.
246). Thus, although stated as a question, such feedback essentially informs
the student of the manner in which the solution is incorrect. In summary, al-
though human tutors are more subtle in communicating their feedback than
most intelligent tutoring systems, it is clear from their leading questions that
the tutors do perform the extremely detailed reasoning to understand the
student's solution and where it goes awry. The difference in strategy appears
to be that human tutors direct students' attention through leading questions,
and create a situation in which the student can do more of the work to dis-
cover the error than would be possible if the tutor would simply describe the
fault in the solution.

To summarize these issues, the analyses of human tutors suggest that
they exhibit certain aspects of the error diagnosis exhibited by the immediate
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feedback model tracing tutors. Feedback from the human tutors is quickly
used by students to confirm that they are on the right track or to realize they
have made an error, and very focused questions from tutors may help students
isolate the particular part of their step that is in error. However, tutors will
not convey any detailed hypotheses about the particular buggy rule that
would lead to the exhibited error, and do not seem to engage in questioning
the student in order to further elucidate the nature of their misconception
(Putnam, 1987). Furthermore, human tutors are able to provide feedback
in a somewhat less intrusive manner than the typical verbal explanations
provided by computer tutors, when simply by delaying simple confirmation
(such as "ok" or "right") they help the student realize that the step needs to
be reconsidered. Human tutors also manage to direct the student's attention
to the error in a more subtle manner, and may even demand more work from
the student in fixing the error than the more direct and informative computer
tutor's messages. On the whole, however, the careful monitoring of students'
solutions by model tracing tutors appears to provide one form of the benefits
of individualized human instruction.

There are also some limitations in the type of feedback possible within
model tracing intelligent tutoring systems. The type of feedback it is pos-
sible to provide is limited in many respects by the relatively low bandwith
of communication between the student and the computer tutor. The hu-
man tutors studied by Fox and those in our laboratory show a high de-
gree of interactivity in their conversations - tutors and students interrupt
each other, complete each other's sentences, and communicate a great deal
through very short utterances or indeed even through short pauses. The
communication can combine a variety of communication media, for example,
talking while pointing, talking while writing, pointing at something written,
and so on. The communication between students and computerized tutors
is much more limited. First, despite achievements in artificial intelligence
in the areas of natural language understanding and natural language gen-
eration, particularly in constrained domains (e.g., Allen, 1987; McKeown
& Swartout, 1987), these capabilities are still greatly limited by comparison
with human communicative abilities. Furthermore, the computer is currently
confined to presentation of information on the screen. Although interesting
techniques are being developed for the input and display of information (e.g.,
Miller 1988; Shneiderman, 1983) this is clearly a more limited medium than
the variety of interaction strategies available to human tutors.
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5.2 Student Control

A related issue concerns the control of the interaction by the student. One
possible answer to the problem in selecting the right information to provide is
to leave the selection of information up to the student. For example, a system
might point out to the student that a step is in error and leave to the student
selection of information about the location of the error, explanations about
why the step will not work, characteristics of a correct step, possible fixes, and
so on. Although letting the student control the explanation process fits well
with some pedagogical philosophies, it remains an empirical question whether
students will take advantage of the help provided and be able to select the
information that would be most useful to them. In many situations, students
may be reluctant to request assistance from a tutor, preferring instead to try
to solve the problem themselves. Experiments on the content of feedback
and issues of student control are needed to explore these issues.

Our initial investigations of tutoring suggests some promising potential
for this possibility, as well as some caution. Our human tutoring studies
show that students ask approximately twice as many questions of a tutor
(our Consultant condition) than they ask questions of the experimenter when
given instructions to solve problems on their own (our No Tutor condition).
Interestingly, the time spent working with the Consultant comprises approx-
imately only one-tenth of these subjects' learning time. However, the de-
creased learning times for the Consultant condition indicates that subjects
learned the material with less difficulty than the No Tutor control group. It is
encouraging that the relatively small amount of tutorial assistance, requested
under student control, produced a large savings in learning time.

It is in some ways tempting to argue that these results support the view
that assistance in computer-based instruction should be completely under
the student's control. However, I would urge caution in extrapolating too
strongly from these results to computer-based instruction controlled com-
pletely by the student. It is important to note that although the interactions
were initiated by students, once initiated, the interactions followed a typi-
cal tutorial style, with much of the control in the hands of the tutor. The
length of the assistance interactions varied widely, from 30 seconds to 15
minutes, presumably due at least in part to the tutor's decisions about when
the student could profitably return to the problem alone. Once called in, the
tutors provided help beyond answers to specific questions, often answering
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questions not asked, or leading students to answer the questions themselves,
through hints. Thus, these tutors are providing significantly more interactive
assistance than the types of hints and error feedback in current intelligent
tutoring systems. It does not follow therefore that rendering the same type
of feedback currently available in intelligent tutoring systems under the stu-
dents' control will produce pedagogical benefits. In any case, these results are
provocative, and suggest the need for empirical work on the issues involved
in student control in intelligent tutoring systems.

Another important aspect of the feedback provided by human tutors is the
delicate balance the tutors maintain between guiding the interaction while
maintaining the students' motivation. Although the student's performance
is certainly greatly assisted by the tutor's guidance, this is more apparent
to outside (objective) observers than to the students themselves. Students
working with human tutors derive not only cognitive benefits but also moti-
vational benefits, and tend to develop increased feelings of competence about
the domain (Lepper et al., in press). The more sophisticated feedback strate-
gies used by human tutors may be more effective in maintaining this balance
than current computer tutors. Our GIL tutor and others using the model
tracing methodology are much more direct in feedback than human tutors.
The control of the interaction by the tutor is much more obvious than in
situations with human tutors. For example, students sometimes ask exper-
imenters "why won't it let me do that?" There are situations in which the
tutoring system will not allow a particular step that a student thinks is valid,
and the relatively restricted interaction possible between student and tutor
does not let students explain what they have in mind. Although it is far from
true that human tutors let students take whatever steps in a problem they
think best, human tutors do manage to appear less controlling. The impact of
the more directed nature of computer tutors on the students' motivation has
yet to be investigated. It is certainly true that intelligent tutoring systems
provide students with more freedom than most computer-assisted instruc-
tion, at least of the drill and practice variety, yet it is likely to seem to the
students that they are more controlling than a human tutor. Further study
is required to investigate the impact of intelligent tutors on motivation, and
specifically the importance of learner control. Overall, however, the guidance
provided by intelligent tutors seems to have a serious positive impact on mo-
tivation, in that it prevents the extremely costly and frustrating episodes in
which students working without tutoring flounder and fail to find solutions to
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problems. A successful tutoring system can bring a difficult domain within
the student's competence, and provide a challenging task with less danger
of failure. For example, Schofield and Evans-Rhodes (1989) have observed
much greater student involvement and motivation among students working
with Anderson, Boyle, and Yost's (1985) geometry tutor than is common for
students in high school geometry classes.

5.3 Facilitating Reasoning

In some regards, computer tutors may have advantages that are difficult for
human tutors to emulate. For example, computers are very effective devices
for organizing the visual work space. An important part of some model
tracing tutors such as our GIL tutor, Anderson, Boyle, and Yost's (1985)
geometry tutor, and other systems such as Algebraland (Foss, 1987), is that
the system automatically updates the screen display to represent the current
problem situation. These systems also make effective use of graphical repre-
sentations to represent the structure of the reasoning. Such representations
are effective in helping students reason about mathematics and program-
ming problems, even in absence of intelligent feedback. Furthermore, the
explicit representation of intermediate products has been extremely effective
in our GIL system. This interface seems to facilitate reasoning through al-
gorithms more than the standard representation for solutions. Finally, the
representation of the reasoning history helps students reflect upon the solu-
tion process, which can be an important component of the learning in these
domains (Collins & Brown, 1988). These systems demonstrate how graphi-
cal representations, automatic updating, and history keeping characteristics
of computerized visual displays can all be used to great advantage. Thus,
optimal strategies for computer tutoring may diverge in some respects from
those used by human tutors.

5.4 Making Reasoning Explicit

An important benefit of human tutors is that they encourage students to
make their reasoning explicit. Palincsar and Brown's (1984) reciprocal teach-
ing method and several programs for teaching "thinking skills" have stressed
students' articulation of their problem solving processes as a method for
building and debugging problem solving skills (see Bransford, Arbitman-
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Smith, Stein, & Vye (1985) for a discussion of such programs). Thus, part
of the benefit of interacting with a tutor may be the articulation of one's
own reasoning. Students benefit by being paired in a collaborative prob-
lem solving situation with the tutor. This is an aspect of tutoring only
partially explored by computer tutors. The model tracing systems do force
students to be explicit about their reasoning, because they need to enter a
solution, step by step, rather than just the final product. Furthermore, some
systems teach students intermediate representations for discussing solution
plans (e.g., Bonar & Cunningham, 1988). In this way, the tutor can provide
a language specially devised for communicating reasoning. Nevertheless, in
most tutoring systems the tutor is clearly in control. It would be interest-
ing to explore the effects of providing a true collaborative problem solver,
in which the benefits of the tutor would not be due to its explanation and
guidance, but instead would be due solely to requiring students to articulate
their reasoning. Another interesting possibility now being explored is the use
of intelligent exploratory environments as the basis for collaborative problem
solving between two students (Behrend, Singer, & Roschelle, 1988).

6 Conclusions

I have examined some of the properties of human tutors and have compared
them to what has been achieved in computerized tutors. Model tracing
tutors can provide the immediate feedback and guidance provided by human
tutors such as hints when students are stuck, feedback to help in locating an
error, and guidance in repairing an error. Currently, human tutors are more
subtle, less direct, and possibly more gentle in this feedback process, but the
cognitive and motivational consequences have yet to be explored. Computer
tutors are currently limited by a low bandwith of communication, but many
advantages of visual displays are now being explored. Much further research
is required on these issues of the timing and content of feedback, student
control, and learning by discovery. Intelligent tutors are now being used as
excellent experimental tools with which to explore these issues. Intelligent
tutors can be used to run more fine-grained studies of feedback and learning
than have been previously undertaken in educational research.
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